

Laboratoire DEEP (Déchets Eaux Environnement Pollutions - Wastes Water Environment Pollutions) INSA-Lyon, France

Iron geochemistry in a contaminated urban soil dedicated to stormwater infiltration

by Qiufang ZHAN

Supervisors: Cécile Delolme, Gislain Lipem<u>28/06/20</u> Vincent Chatain

PRESENTAT
ION OF
SUBJECTMATERIAL
AND
AND
METHODSRESULTS
AND
AND
DISCUSSIOCONCLUSION
AND
AND
DISCUSSIOPRESENTAT
AND
DISCUSSIOPERSPECTIVE
S

Background

Sedimentation basin

Infiltration

Basin combining sedimentation and infiltration

PRESENTAT	MATERIAL	RESULTS	CONCLUSION
ION OF	AND	AND	AND
SUBJECT	METHODS	DISCUSSIO	PERSPECTIVE
Objective		Ν	S
UNICLIVE			

Iron (Fe) - Important concentration (3.91 wt.%) in urban sediments

- key role in natural environments (redox-

biogeochemical cycling

► Few studies^{trace} contantinants or multicetement studies coupling major and trace mineral and reactivity characterization

Study the speciation and the potential mobilization of Fe and other heavy metals in urban stormwater sediments accumulated at the surface of an infiltration basin

PRESENTAT
ION OF
SUBJECTMATERIAL
AND
AND
METHODSRESULTS
AND
AND
DISCUSSIOCONCLUSION
AND
AND
DISCUSSIOPRESENTAT
AND
DISCUSSIOPERSPECTIVE
Sutrated zone

<u>Site</u>

Catchment in Chassieu, Lyon,

- ✓ 3 5 kg collected and homogenized
- Passed through a 4-mm sieve

PRESENTAT
ION OF
SUBJECTMATERIAL
AND
AND
METHODSRESULTS
AND
AND
DISCUSSIOCONCLUSION
AND
AND
DISCUSSIOMethodsMATERIAL
AND
AND
DISCUSSIOPERSPECTIVE
S

Physico-chemical characterization

- ✓ Particle size distribution (PSD)
- ✓ pH
- ✓ Water content
- ✓ Organic matter
- ✓ Chemical composition ICP-AES

Mineralogical characterization

- ✓ X-ray diffraction
- Optical microscopy and scanning electron microscopy
- ✓ The Fourier transform infrared spectroscopy (FTIR)

PRESENTATMATERIALION OFANDSUBJECTMETHODSHysico-criedicalcharacterization

RESULTS AND DISCUSSIO N

CONCLUSION AND PERSPECTIVE S

Characteri	Dry zone	Wet zone	Saturated
Stic			zone
	Texture:	Texture:	Texture:
	Loam	Silt loam	Silt loam
	D10: 6.64	D10: 3.11	D10: 3.33
Granulome	μm	μm	μm
trv	D50: 59.93	D50: 22.32	D50: 20.38
	μm	μm	μm
	D90:	D90:	D90:
	506.85 µm	187.39 µm	125.46 µm
рН	7.0	7.0	7.0
Water			
content	20.9±0.8	52.6±4.6	66.5±0.6
(wt.%)			
Organic			
matter	17.5	26.8	22.2

/...L 0/ \

 Silts -- easily transported as suspended particles in water

- ⇒ silts deposits
 - biofilm development and clogging
- preferential association with OM

RESULTS CONCLUSION AND AND DISCUSSIO PERSPECTIVE Ν 3

Major elements content in sediments (wt.%)

Trace metals content in sediments (ppm)

similar total element contents

PRESENTAT MATERIAL ION OF AND SUBJECT METHODS

Major elements content in sediments (wt.%)

 similar total element contents

■ potential source of pollution ⇒ valorization

Dry zone Wet zone Saturated zone

Dry zone Wet zone Saturated zone

PRESENTATMATERIALION OFANDSUBJECTMETHODS

RESULTS AND DISCUSSIO N

CONCLUSION AND PERSPECTIVE S

Sequential chemical extraction

Sequential extraction procedure adapted from Claff et al. (2010)

🖝 organic-Fe ↘

► crystalline Fe
oxide
> periodic
freshwater flooding
and redox cycling

■Pyrite-Fe 🖌

Fe content in the sequential extraction phases adapted with the Claff et al.

PRESENTAT	MATERIAL	RESULTS	CONCLUSION
ION OF	AND	AND	AND
1°URIECT	METHODS	DISCUSSIO	PERSPECTIVE
CONCLUSION:		Ν	S
This study:			

- highlights the significant amount of Fe (up to 3.91 wt.%) found in the sediment of urban stormwater infiltration basin and pyrite (reactive material compound)
- provides a basis for the rational interpretation of iron partitioning in the urban sediment
- Supports the management of maintenance dredging of the sediment (economize \$)

PERSPECTIVES: Future work :

- Particle settling velocity
- Isotopes of Fe
- Investigation of other basins [] Generalization

<u>qiufang.zhan@insa-</u> <u>lyon.fr</u>